β-Cell–Specific Protein Kinase A Activation Enhances the Efficiency of Glucose Control by Increasing Acute-Phase Insulin Secretion
نویسندگان
چکیده
Acute insulin secretion determines the efficiency of glucose clearance. Moreover, impaired acute insulin release is characteristic of reduced glucose control in the prediabetic state. Incretin hormones, which increase β-cell cAMP, restore acute-phase insulin secretion and improve glucose control. To determine the physiological role of the cAMP-dependent protein kinase (PKA), a mouse model was developed to increase PKA activity specifically in the pancreatic β-cells. In response to sustained hyperglycemia, PKA activity potentiated both acute and sustained insulin release. In contrast, a glucose bolus enhanced acute-phase insulin secretion alone. Acute-phase insulin secretion was increased 3.5-fold, reducing circulating glucose to 58% of levels in controls. Exendin-4 increased acute-phase insulin release to a similar degree as PKA activation. However, incretins did not augment the effects of PKA on acute-phase insulin secretion, consistent with incretins acting primarily via PKA to potentiate acute-phase insulin secretion. Intracellular calcium signaling was unaffected by PKA activation, suggesting that the effects of PKA on acute-phase insulin secretion are mediated by the phosphorylation of proteins involved in β-cell exocytosis. Thus, β-cell PKA activity transduces the cAMP signal to dramatically increase acute-phase insulin secretion, thereby enhancing the efficiency of insulin to control circulating glucose.
منابع مشابه
PKA Enhances the Acute Insulin Response Leading to the Restoration of Glucose Control
Diabetes arises from insufficient insulin secretion and failure of the β-cell mass to persist and expand. These deficits can be treated with ligands to Gs-coupled G-protein-coupled receptors that raise β-cell cAMP. Here we studied the therapeutic potential of β-cell cAMP-dependent protein kinase (PKA) activity in restoring glucose control using β-caPKA mice. PKA activity enhanced the acute insu...
متن کاملNeurotrophin Signaling Is Required for Glucose-Induced Insulin Secretion.
Insulin secretion by pancreatic islet β cells is critical for glucose homeostasis, and a blunted β cell secretory response is an early deficit in type 2 diabetes. Here, we uncover a regulatory mechanism by which glucose recruits vascular-derived neurotrophins to control insulin secretion. Nerve growth factor (NGF), a classical trophic factor for nerve cells, is expressed in pancreatic vasculatu...
متن کاملSecretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion
Secretagogin (SCGN), a Ca(2+)-binding protein having six EF-hands, is selectively expressed in pancreatic β-cells and neuroendocrine cells. Previous studies suggested that SCGN enhances insulin secretion by functioning as a Ca(2+)-sensor protein, but the underlying mechanism has not been elucidated. The present study explored the mechanism by which SCGN enhances glucose-induced insulin secretio...
متن کاملProtein Kinase Mitogen-activated Protein Kinase Kinase Kinase Kinase 4 (MAP4K4) Promotes Obesity-induced Hyperinsulinemia*
Previous studies revealed a paradox whereby mitogen-activated protein kinase kinase kinase kinase 4 (Map4k4) acted as a negative regulator of insulin sensitivity in chronically obese mice, yet systemic deletion of Map4k4 did not improve glucose tolerance. Here, we report markedly reduced glucose-responsive plasma insulin and C-peptide levels in whole body Map4k4-depleted mice (M4K4 iKO) as well...
متن کاملDynamics of glucose-induced localization of PKC isoenzymes in pancreatic beta-cells: diabetes-related changes in the GK rat.
Glucose metabolism affects most major signal pathways in pancreatic beta-cells. Multiple protein kinases, including protein kinase C (PKC) isoenzymes, are involved in these effects; however, their role is poorly defined. Moreover, the dynamics of kinase isoenzyme activation in reference to the biphasic insulin secretion is unknown. In perfused pancreas of Wistar rats, PKCalpha staining was stro...
متن کامل